\qquad

Velocity

Date: \qquad

1. A caterpillar travels across the length of a 2.00 -meter porch in 6.5 minutes. What is the average velocity of the caterpillar in m / s ?
vave $=$
2. A hiker is at the bottom of a canyon facing the canyon wall closest to her. She is 280.5 meters from the wall and the sound of her voice travels at $340 \mathrm{~m} / \mathrm{s}$ at that location. How long after she shouts will she hear her echo?

$t=$

3. A motorist traveling on a straight stretch of open highway sets his cruise control at 90 $\mathrm{km} / \mathrm{hr}$. How far will he travel in 15 minutes?

$s=$

4. A woman from Pasadena makes a trip to a nearby shopping mall that is located 40 miles from her home. On the trip to the mall she averages $80 \mathrm{mi} / \mathrm{hr}$ but gets a speeding ticket upon her arrival. On the return trip she averages just $40 \mathrm{mi} / \mathrm{hr}$. What was her average speed for the entire trip?
vave $=$
5. A cross-country race car driver sets out on a 100-mile race. At the halfway marker (50 miles), her pit crew radios that she has averaged only $50 \mathrm{mi} / \mathrm{hr}$. How fast must she drive over the remaining distance in order to average $100 \mathrm{mi} / \mathrm{hr}$ for the entire race?

$$
v=
$$

Name: \qquad

1. A ball is dropped off of a 20.5 meter rooftop. What will the velocity of the ball be just before it hits the ground?
2. A sky diver jumps out of an airplane and falls for 6.5 seconds before pulling his parachute. How far has he fallen in that time?
3. A physics student throws his book off of a rooftop. If the book fell a total distance of 3.1 meters and it took . 45 seconds for it to hit the ground, what was the speed of the book when it left the student's hand?
4. A ball is thrown straight up in the air. If it is in the air for 3.2 seconds, how high did the ball reach?
\qquad
5. A feather is dropped inside a vacuum chamber.
a. What is the velocity after .3 seconds?
b. How far has it fallen after .3 seconds?
6. A dragster is uniformly accelerated from rest at a rate of $4.5 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 100 meters. What is its velocity as it hits the 100 meter finish line?
7. A woman hits her car brakes in a panic stop and decelerates at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$. The car comes to rest at a distance of 62.5 meters from the point where she first applied her brakes. How fast was she traveling when she hit her brakes?
8. A spaceship is traveling at $3000 \mathrm{~m} / \mathrm{s}$ when its booster rocket is fired accelerating it at a rate of $15 \mathrm{~m} / \mathrm{s}^{2}$. What distance does the spaceship travel during its first 4 seconds of acceleration?
9. The Eiffel Tower is 300 meters tall. Disregarding air friction, at what velocity would an object be traveling when it reaches the ground if it were dropped from the top of the tower?
10. A rocket accelerates upward from rest with a uniform acceleration of $4.2 \mathrm{~m} / \mathrm{s}^{2}$. How far will the rocket have traveled at the end of 8.0 seconds?
11. The brakes on a car permit it to decelerate at the rate of $-.8 \mathrm{~m} / \mathrm{s}^{2}$. How much distance is required to stop this car when it is traveling $60 \mathrm{~km} / \mathrm{hr}$?
12. A solar powered aircraft reaches lift off speed of $120 \mathrm{~km} / \mathrm{hr}$ in 300 meters. What is the acceleration of the plane?
13. A motorcycle traveling $30 \mathrm{~m} / \mathrm{s}$ decelerates at the rate of $-2 \mathrm{~m} / \mathrm{s}^{2}$. What distance does it travel before coming to rest, and how long does it take to stop?
14. Beth and Rosa brake their racing sled so that it decelerates at a uniform rate of -. 43 $\mathrm{m} / \mathrm{s}^{2}$. How long does it take to stop if it travels 85 meters before coming to rest?
15. Tests on the new Speedmobile show that it can decelerates at a uniform rate of -.67 $\mathrm{m} / \mathrm{s}^{2}$. How long does it take to stop if it travels 85 meters before coming to rest?
16. Andrew kicks a soccer ball down a hill so that it leaves the top of the hill with a speed of $.2 \mathrm{~m} / \mathrm{s}$. It accelerates at a constant $.1 \mathrm{~m} / \mathrm{s}^{2}$. How far will the ball travel in 30 seconds?
17. The Saturn car company finds that its new racing car will accelerate at a uniform rate of $6.28 \mathrm{~m} / \mathrm{s}^{2}$ over a 1 kilometer track. How long will it take the car to cover this track?
18. A rocket traveling $50 \mathrm{~m} / \mathrm{s}$ accelerates at a rate of $2 \mathrm{~m} / \mathrm{s}^{2}$. What is the speed of the rocket after it has traveled 500 meters, and what time does it take to reach this speed?
\qquad

ACCELERATED MOTION II

Date: \qquad

Note: Acceleration due to gravity: $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

1. A feather is dropped inside a vacuum chamber.
a. What is the velocity after 0.30 seconds?

$$
{ }^{{ }^{v} f=}
$$

c. How far has it fallen after 0.30 seconds?

$$
s=
$$

2. A dragster is uniformly accelerated from rest at a rate of $4.5 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 100 meters. What is its velocity as it hits the 100 meter finish line?
${ }^{v^{\prime}} f=$
3. A woman hits her car brakes in a panic stop and decelerates at a rate of $5 \mathrm{~m} / \mathrm{s}^{2}$. The car comes to rest at a distance of 62.5 meters from the point where she first applied her brakes. How fast was she traveling when she hit her brakes?

$$
{ }^{v_{0}}
$$

4. A spaceship is traveling at $3000 \mathrm{~m} / \mathrm{s}$ when its booster rocket is fired accelerating it at a rate of $15.00 \mathrm{~m} / \mathrm{s}^{2}$. What distance does the spaceship travel during its first 4.000 seconds of acceleration?

$s=$

5. The Eiffel Tower is 300 meters tall. Disregarding air friction, at what velocity would an object be traveling when it reaches the ground if it were dropped from the top of the tower?

$$
{ }^{{ }^{v} f=}
$$

NAME
DATE

SPEED AND ACCELERATION

DIRECTIONS: Solve each of the following problems.

1. A rocket accelerates upward from rest with a uniform acceleration of $4.2 \mathrm{~m} / \mathrm{sec}^{2}$. How far will the rocket have traveled at the end of 8.0 seconds?
2. The brakes on a car permit it to decelerate at the rate of $-0.8 \mathrm{~m} / \mathrm{sec}^{2}$. How much distance is required to stop this car when it is traveling $60.0 \mathrm{~km} / \mathrm{hr}$?
3. A solar-powered aircraft reaches lift-off speed of $120 \mathrm{~km} / \mathrm{hr}$ in 300 meters. What is the acceleration of the plane?
4. A motorcycle traveling $30.0 \mathrm{~m} / \mathrm{sec}$ decelerates at the rate of $-2.0 \mathrm{~m} / \mathrm{sec}^{2}$. What distance does it travel before coming to rest, and how long does it take to stop?
5. Beth and Rosa brake their racing sled so that it decelerates at a uniform rate of $-0.43 / s^{-1}{ }^{2}$. How long does it take to stop if it travels 85 meters before coming to rest?
6. Tests on the new Speedmobile show that it can decelerate from $96.2 \mathrm{~m} / \mathrm{sec}$ to $39.7 \mathrm{~m} / \mathrm{sec}$ in 4.352 seconds. What distance does the car travel in this time? What is the car's rate of deceleration during this period?
7. Andrew kicks a croquet ball down a hill so that it leaves the top of the hill with a speed of 20 $\mathrm{cm} / \mathrm{sec}$. It accelerates at a constant $10 \mathrm{~cm} / \mathrm{sec}^{2}$. How far will the ball travel in 30 seconds?
8. Donna Jeanne sees an elephant dart into the road 50 meters ahead of her car while she is driving a t $65 \mathrm{~km} / \mathrm{hr}$. She slams on her brakes, which decelerates the car at the rate of -5.8 $\mathrm{m} / \mathrm{sec}^{2}$. Will she be able to avoid hitting the elephant?
9. The Whizbangg Car Company finds that its new racing car will accelerate at a uniform rate of $6.39 \mathrm{~m} / \mathrm{sec}^{2}$ over a 1.000 kilometer track. How long will it take the car to cover this track?
10. A rocket traveling $50.0 \mathrm{~m} / \mathrm{sec}$ accelerates at a rate of $2.0 \mathrm{~m} / \mathrm{sec}^{2}$. What is the speed of the rocket after it has traveled 500 meters, and what time does it take to reach this speed?

NAME \qquad DATE \qquad

ACCELERATION

DIRECTIONS: Solve each of the following problems.

1. A speedboat increases its speed from $42 \mathrm{~m} / \mathrm{sec}$ to $88 \mathrm{~m} / \mathrm{sec}$ in a 4.0 second period. What is its acceleration during this period?
2. A jet plane is traveling at $210 \mathrm{~km} / \mathrm{hr}$ when its wheels leave the runway and at $340 \mathrm{~km} / \mathrm{hr} 8.0$ seconds later. What is its acceleration during this time?
3. The same plane lands at a speed of $185 \mathrm{~km} / \mathrm{hr}$ and comes to rest 36.2 seconds later. What is its acceleration during landing?
4. Bob Ulster times a race car as it passes two points on a race track. Its speeds at those two points are $43.2 \mathrm{~m} / \mathrm{sec}$ and $68.7 \mathrm{~m} / \mathrm{sec}$. If the car requires 2.0 seconds to travel between these two points, what was its acceleration?
5. Felix steals second base running at a speed of $4.2 \mathrm{~m} / \mathrm{sec}$. He slides into second from a distance of 3.1 m . What is his acceleration during this slide, and what time is required for him to complete the slide?
6. The Space Shuttle leaves its launch pad with a uniform acceleration of $8.5 \mathrm{~m} / \mathrm{sec}^{2}$. What will be its speed after 1.0 seconds? After 10 seconds? After 40.0 seconds?
7. Donna swings at a racketball moving with a forward speed of $3.0 \mathrm{~m} / \mathrm{sec}$. She hits the ball with a force that accelerates it by $2.5 \mathrm{~m} / \mathrm{sec}^{2}$ for 0.8 sec . What is the final velocity of the ball?
8. A spacecraft orbits at a uniform speed of $1050 \mathrm{~m} / \mathrm{sec}$. The firing of one of its rockets gives it an acceleration of $185 \mathrm{~m} / \mathrm{sec}^{2}$. What will be its new speed after 12.5 seconds of rocket ignition?
9. The driver of a bobsled brakes the speed of his sled from $24.8 \mathrm{~m} / \mathrm{sec}$ to $12.2 \mathrm{~m} / \mathrm{sec}$. If the brakes are applied for 1.4 seconds, what was the rate of acceleration?
10. An airplane, traveling $142.5 \mathrm{~km} / \mathrm{hr}$ at the moment it touches the runway, runs off the end of the runway still traveling at $36.7 \mathrm{~km} / \mathrm{hr}$. If the plane's rate of acceleration was $-1.6 \mathrm{~m} / \mathrm{sec}^{2}$, how long and far did the plane travel along the runway?
